21 September 2023

How to derive general relativity

from Wolfram Physics

Here’s a masterclass from Jonathan Gorard.

One of the most compelling results to come out of the Wolfram Physics is Jonathan’s derivation of the Einstein equations from the hypergraph.

Whenever I hear anyone criticize the Wolfram model for bearing no relation to reality, I tell them this: Jonathan Gorard has proved that general relativity can be derived from the hypergraph.

In this excerpt from our conversation, Jonathan describes how making just three reasonable assumptions – causal invariance, asymptotic dimension preservation and weak ergodicity – allowed him to derive the vacuum Einstein equations from the Wolfram model.

In other words, the structure of space-time in the absence of matter more or less *falls out of* the hypergraph.

And making one further assumption – that particles can be treated as localized topological obstructions – allowed Jonathan to derive the *non*-vacuum Einstein equations from the Wolfram model.

In other words, the structure of space-time in the *presence* of matter, too, falls out of the hypergraph.

It’s difficult to overstate the importance of this result.

At the very least, we can say that the Wolfram model is *consistent* with general relativity.

To state it more strongly: we no longer need to take general relativity as a given; instead, we can *derive* it from Wolfram Physics.

Enjoy!

Mark

—

The Last Theory is hosted by Mark Jeffery, founder of Open Web Mind

Subscribe to The Last Theory Newsletter

for fresh insights into Wolfram Physics every other week

Thanks for subscribing to The Last Theory newsletter

Check your inbox for an email to confirm your subscription

Oh no, something went wrong, and I was unable to subscribe you!

Please refresh your browser and try again